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SUMMARY

Southwest Research Institute conducted a research project focused on developing a methodology
. , for calculating the probabilistic response of deep underground tunnels as part of an ongoing
program sponsored by DNA. A specific objective of the effort was to develop a methodology
that is more efficient than traditional Monte Carlo. Prior to this project, probabilistic analysis of
underground structures was made using Monte Carlo simulation; however, due to it's inherent
inefficiency, only analytical or very simple numerical tunnel models could be employed.
Recently, it has been well established by the DNA geomechanics community that predicting
tunnel response to highly dynamic loading requires highly-detailed numerical models, which in
turn require substantial computational resources and time.

|

\

|

The major result of this project is the development and verification of a suite of probabilistic
analysis methods that allow all significant uncertainties in complex numerical tunnel
deformation/damage models to be simulated in an efficient manner. Specifically, new and
enhanced existing probabilistic analysis algorithms have been developed and integrated with a
general-purpose transient dynamic finite element program. We participated in two large
verification and validation programs moderated by DNA to gain confidence in the underlying
deterministic tunnel models. Several demonstration probabilistic analyses were performed and
verified using Monte Carlo and/or other simulation methods. In all cases, the advanced
probabilistic methods used were shown to be as accurate as Monte Carlo simulation, but orders
of magnitude more efficient.
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Several significant advances have been made within the probabilistic algorithms to tailor their
use for underground tunnel analysis: a capability for computing efficiently the confidence
bounds on the calculated probability of failure due to random and systematic errors; a capability
for handling non-normal correlated random variables; new methods for performing sensitivity
analysis to assess the impact of changing the mean, standard deviation, or distribution type of
any input random variable; and a methodology for treating the estimated coefficients in the finite
element constitutive model as random variables.

Specific accomplishments include:

1. An analytical model for predicting tunnel closure was formulated,
implemented, and integrated with SwRI's fast probability integration
(NESSUS/FPI) program. Probabilistic sensitivity factors computed as a
by-product of the FPI calculation provided new insight into the
importance ranking of the input variables.

2. A general automated interface was developed between the probabilistic
algorithms in NESSUS/FPI and the PRONTO explicit dynamic finite
element (FE) program. Any variable pertaining to the analysis can be
considered random, e.g., material parameters, loading time history, and
boundary conditions. Probabilistic methods such as advanced mean value,
adaptive importance sampling, standard Monte Carlo, first order reliability
method, second order reliability method, and fast probability integration
can all be used. v




A new method for estimating confidence bounds on the tunnel closure
cumulative distribution function was developed and implemented in FPI.
Confidence bounds are used to estimate the uncertainty band in a
probabilistic prediction due to effects such as statistical uncertainty, bias
and systematic errors. The new method is based on FPI's advanced mean
value (AMV) probabilistic algorithm. Before this method was developed,
Monte Carlo simulation was required to estimate the confidence bounds.

A new and general method for treating non-normal correlated random
variables in the probabilistic analysis was developed and implemented in
FPI. This capability allows the correlation coefficient between any of the
random variables to be input regardless of the distribution type specified
for each random variable. Prior to this development, only random
variables having certain distribution functions could be correlated.

A probabilistic cap model methodology was developed and implemented.
The development of the model focused on the accurate description of the
parameter uncertainties in the constitutive model. The current model
treats the parameters as random variables, since they can be measured and
statistically modelled. Statistical parameters are estimated from repeat
laboratory tests.

Several sensitivity calculations have been developed and implemented.
First-order approximate sensitivities with respect to the mean and standard
deviation of each input random variable are computed from the
probabilistic sensitivity factors produced as a by-product of the FPI
calculation. A new method for computing these same sensitivities which
re-uses the samples used by the adaptive importance sampling (AIS)
method has been developed. Finally, the sensitivity of the calculated
probability with respect to the choice of input distribution has also been
developed.

Several demonstrative probabilistic analyses have been performed using
1) an analytical tunnel closure model; 2) a transient dynamic FE model of
a deep tunnel (500m deep), and 3) FE models of the SRI SWAT precision
tests, and 4) a shallow tunnel targeting/vulnerability problem. In these
analyses, the advanced probabilistic methods were shown to be accurate
and orders of magnitude more efficient than Monte Carlo simulation.

Many of the algorithms enhanced and/or implemented on the DNA project were developed to
some degree by a 9-year NASA project with SWRI entitled "Probabilistic Structural Analysis
Methods for Select Space Shuttle Components" (PSAM). PSAM was aimed at developing
probabilistic structural analysis methods for space shuttle main engine applications. This
significant level of technology transfer from this NASA project to the DNA project greatly
increased the scope and magnitude of accomplishments than what would have otherwise been

iv
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SECTION 1

INTRODUCTION

1.1 BACKGROUND.

Predicting the behavior and failure of deep underground tunnels in severe loading environments
is now becoming possible with new computational techniques and more powerful computers.
The problems are highly transient, involve nonlinear material behavior and include large
uncertainties in material properties, loading, and geometry. Sophisticated numerical models
based on finite and distinct element methods are being developed and applied to these problems.
However, computational costs are high as even a single analysis may require hours of computer
time. This computational cost coupled with the need to account for uncertainties in a direct
manner has led to the development and application of efficient probabilistic analysis methods.

Parameters used to describe geomechanics problems are known to possess large uncertainties.
These large uncertainties in material properties, loading, and geometry stem from the fact that
the composition of most rock is highly variable and includes joints and faults not accounted for
in material testing. An assessment of the variability or randomness of the structural behavior
and/or failure requires careful study for a thorough understanding of the problem. The
traditional method of accounting for uncertainties is a factor-of-safety approach. However, this
approach does not quantify the failure probability of a given design, which can lead to either
overconservative or unreliable designs, nor does it identify the variable contributing the most to
the failure probability.

The traditional method of probabilistic analysis is Monte Carlo simulation. This approach
generally requires hundreds of thousands of simulations, and is impractical when each
simulation involves extensive numerical calculations. The pursuit of alternative probabilistic
analysis methods that are more efficient than Monte Carlo simulation has led to the development
of many new approximate probabilistic methods over the past two decades. Many of these
methods have been shown to be highly-accurate and applicable for use with complex numerical
deterministic models.

1.2 OBJECTIVE.

The objective of this research was to develop a methodology that predicts the uncertainty in
structural deformation and damage in underground tunnels given the uncertainty in geologic and
reinforcing-structure parameters. The method was to be more efficient than traditional Monte
Carlo. The development of fast-running engineering models for tunnel response was also
required.




The approach taken was to:

1. Develop a three-dimensional numerical model for the response of deep-buried tunnels.

2. Verify and validate the deterministic numerical model.

3. Develop and integrate efficient probabilistic methods with the validated deterministic
model.

4. Prepare probabilistic inputs.

Calculate the uncertainty in structural deformation and identify key problem variables for
several selected problems.

6. Demonstrate probabilistic analysis methods using a fast-running tunnel targeting model.
1.3 SCOPE.

To satisfy the objective, several new and efficient probabilistic methods were developed and
integrated with a general purpose numerical model. A common element to the methods is the
use of fast probability integration (FPI) algorithms, which have been shown to be many times
more efficient than Monte Carlo simulation (Wu and Wirsching, 1987). The advanced mean-
value (AMV) procedure, which is based on FPI, was found to be extremely efficient in
computing the probabilistic response of complex structures with relatively few response
calculations. As a means of verification, several advanced simulation methods were also
employed such as Latin Hypercube Simulation (LHS) and Adaptive Importance Sampling (AIS)

This report is organized as follows: Section 2 summarizes the development of two deterministic
models; an analytical tunnel closure model and a more general purpose finite element (FE)
model. Section 3 reports on the verification and validation of the FE model. In Section 4, the
probabilistic methods employed are presented. The probabilistic FE model is demonstrated on
several problems in Section 5, including a deep tunnel analysis, a dynamic laboratory
experiment, and a tunnel vulnerability problem. References to the literature are used where
possible to keep the report concise.




SECTION 2

DETERMINISTIC TUNNEL MODELS

2.1 INTRODUCTION.

In this Section, two deterministic models are presented. The first model, based on the work
of Hendron-Aiyer (1972), has been used for tunnel analysis and includes both elastic and
plastic closure. Although the model makes several simplifying assumptions, it has been used
extensively in the DNA community for making rapid assessments and has performed
remarkably well. The second model is a general-purpose finite element solid dynamics
program (PRONTO) employing several constitutive models for modeling the elastic and
plastic response of intact rock and joints. Since PRONTO is developed and maintained by
Sandia National Laboratories (SNL) and is available for government and commercial use, the
enhancements made to PRONTO during the course of this program are readily available.

2.2 ANALYTICAL ELASTOPLASTIC TUNNEL CLOSURE MODEL.

The problem solved is that of a long, circular tunnel of radius a in an elastic-perfectly plastic
Mohr-Coulomb material subjected to static axisymmetric pressure on the boundary of the
tunne! and also at infinity. Plane strain is assumed along the axis of the tunnel, and the
plastic flow of the medium may be nonassociative. The solution assumes that the internal
and far-field pressure are increased together until the desired internal pressure is imposed.
The far-field pressure is then further increased, resulting in yielding of the medium around the
tunnel and increased tunnel closure.

The problem geometry is given in Figure 2-1. The variables in the model are Young's
modulus, Poisson's ratio, unconfined compressive strength, angle of internal friction, a dilation
parameter, internal pressure, and external pressure.

The formulae for tunnel closure, AD/D, are given in Thacker and Senseny (1992) from the
solution for the stress and displacement fields obtained by Wintergerst, et al., (1991). Their
work extended the solutions obtained by Florence and Schwer (1978) to allow for non-
associated plastic flow. The Florence and Schwer solution removed the constraint of earlier
solutions (Newmark, 1969; Hendron and Aiyer, 1972) that the least compressive principal
stress be the radial stress. A complete description of the model and the analytical tunnel
closure equations can be found in Thacker and Senseny (1992).



Elastic

Plastic

Plastic

Branch 1 Branch 2
(a) - Outer Elastic and Three Plastic Zones (b) - Outer Elastic and Two Plastic Zones

Figure 2-1. Analytical tunnel problem geometry: a) case 1 - outer elastic and three plastic zones, b)
case 2 - outer elastic and two plastic zones.

2.3 EXPLICIT DYNAMIC FINITE ELEMENT MODEL.

PRONTO2D is a two-dimensional transient solid dynamics code for analyzing large
deformations of highly nonlinear materials subjected to extremely high strain rates (Taylor and
Flanagan, 1987). It is the latest in a series of transient dynamic finite element codes that have
been developed at Sandia National Laboratories, beginning with HONDO (Key, et al., 1978).
As such, PRONTO2D contains a number of state-of-the-art numerical algorithms, including an
adaptive timestep control algorithm, a robust hourglass control algorithm, a very accurate
incremental rotation algorithm, and a robust surface contact algorithm. Four-noded, uniform-
strain, quadrilateral elements with single-point integration are used in the finite element
formulation. Beyond its general capabilities, PRONTO2D was chosen for the calculations
because new constitutive models are readily added and because a three-dimensional derivative of
the program is available (PRONTO3D).

The two features that make the deep tunnel calculations relatively unique among
large-deformation solid dynamics problems are: 1) a jointed rock mass subject to loading
conditions that could result in large relative motions (sliding) between adjacent rock blocks, and
2) loading conditions that could result in substantial tensile failure, plastic deformation, and
dilation within the rock blocks. The joints also affect the elastic behavior of the rock mass by
reducing its elastic moduli from the intact rock values. Further, the elastic moduli of jointed
rock generally are nonlinear functions of the joint apertures.



The surface contact algorithm in PRONTO2D is directly applicable to modeling the slippage
between adjacent rock blocks. It is designed to simulate smooth, cohesionless surfaces with
shear strengths defined in terms of static and dynamic coefficients of friction. In the tunnel
problems, the static coefficient of friction is the tangent of the joint friction angle. The friction
coefficient does not decay during sliding, so the dynamic coefficient of friction is equal to the
static coefficient. '

The surface contact algorithm does not provide a means to model the elastic behavior of the
joints. Consequently, the approach used is to superpose the nonlinear stress-displacement
response of the joints and the linear stress-strain response of the intact rock. The result is a
composite material whose elastic behavior is equivalent to a jointed rock mass. This approach
has been developed and used successfully by other modelers (Labreche and Petney, 1987) and it
is referred to as the Complaint Joint Model (CJM). Note that the elastic behavior of jointed rock
masses and as simulated by the CJM is inherently anisotropic because the stress-strain response
normal to a joint set is substantially different from the response tangential to the joint set.

2.3.1 Explicit Time Integration.
The equations of motion are integrated using a modified central difference scheme in

PRONTO2D. The velocities are integrated with a forward difference and the displacements are
integrated with a backward difference. This scheme is expressed as

EXT INT
AR/
ﬂ' = —
m
- 2.1)
ut+At - ll‘+ Amt
U ppy = U+ ATL L,

where 7 is the external nodal force, £ is the internal nodal force, m is the nodal point
lumped mass, and At is the time increment. This central difference operator is conditionally
stable and the Courant stability limit is given by the highest eigenvalue ©_, of the system
(Bathe and Wilson, 1976)

2
At s —— . (2.2)

mmx

Flanagan and Belytschko (1984) provided eigenvalue estimates for the uniform strain
quadrilateral used in PRONTO2D.

Numerical damping is introduced in the solution by adding artificial viscosity. This prevents
high velocity gradients from collapsing an element before is has a chance to respond and to quiet
truncation frequency ringing. The technique used in PRONTO2D is to add viscosity to the
"bulk" response. This generates a viscous pressure in terms of the volume strain rate.




2.3.2 Four Node Uniform Strain Element.

PRONTO2D uses a four-noded two-dimensional uniform strain element in the finite element
formulation. A one point integration of the element under-integrates the element but provides a
large computational advantage over a two-by-two integration rule. However, this results in a
rank deficiency for the element that may cause spurious zero energy (hourglass) modes.

The uniform strain element considers only a fully linear field. Any remaining nodal velocity
field is the hourglass field. Possibly severe unrestricted mesh distortion can occur if these modes
are excited. The method used in PRONTO2D isolates the hourglass modes so they may be
treated independently of the rigid body and uniform strain modes (Flanagan and Belytschko,
1981). PRONTO3D, which also uses reduced integration elements, uses a similar approach to
control hourglassing.

2.3.3 Material Behavior.

2.3.3.1 Drucker-Prager. Several classical yield surfaces defined in terms of the first stress
invariant and the second deviatoric stress invariant have been used to model plasticity in rock.
They include the linear Mohr-Coulomb and the Drucker-Prager yield criteria. The Drucker-
Prager yield function is

flo,) = JH-al,-k @3

where o y are the components of the stress tensor, « and k are material constants, J, is the first
invariant of the stress tensor, and Jz’ is the second invariant of the deviatoric stress tensor. The
yield surface is the locus of stress states at which the value of the yield function is zero (f = 0).
Consequently, the Drucker-Prager yield surface is a cone in principal stress space with the axis
of the cone along the hydrostat.

The Drucker-Prager and the Mohr-Coulomb yield criteria are equivalent only at certain stress
states, depending on how the Drucker-Prager material constants are evaluated. To match the

Mohr-Coulomb criterion in triaxial compression, the material constant$ must be evaluated as

follows:

. = 2sin¢
v3(3 -sind)
2.4
k= ( ____2\/5(1)84)) [
3-sind

where ¢ andc, are the Mohr-Coulomb friction angle and cohesion, respectively. The resultant
Drucker-Prager yield surface circumscribes the Mohr-Coulomb yield surface.

The stress state is elastic when the yield function is negative (f<0). When the stress state ison
the yield surface (f = 0) and the loading condition is such that it would result in f20, the
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resulting deformation is plastic. The components of the resultant plastic strain tensor are defined
in terms of the flow rule, which is classically stated as proportional to the gradient of a plastic
potential function g(o PR The proportionality constant is determined by the consistency
condition which requ1res that the stress state remain on the yield surface during plastic
deformation. When the plastic potential function and the yield function coincide for all stress
states (g =f) the flow rule is said to be associated with the yield function.

An incremental method using tangent stiffness (Chen and Han, 1988) is used to implement
Drucker-Prager plasticity in the constitutive model that was added to PRONTO2D for the
benchmark problems. The incremental stress-strain relationship can be expressed in the
following general form:

_0g of
Y"* 3¢, 90, ekl

af Cr!lll —gg_
do do,,

rs

do, = |Cyy- de, (2.5)

where do, and de,, are the components of the incremental stress and strain tensors, respectively,
Cyy are the components of the elastic coefficient tensor, and repeated subscripts indicate
summatlon The coefficient tensor in the brackets represents the elastic-plastic tensor of tangent
moduli for an elastic-perfectly plastic material. The quantities in the brackets, including Cp, for
a nonlinear elastic material such as in the CJM, are evaluated at the current stress state.

For the Drucker-Prager yield surface, the partial derivatives of the yield function with respect to
the stress components are

of _ % -aa

aoy 2@

(2.6)

where s, are the components of the deviatoric stress tensor, (s, = o,-6,J,/3)and 6 g is the
Kronecker delta function. In the constitutive model added to }gRON'lgO the following
extended form of the plastic potential function associated with the Drucker-Prager yield function
is used:

g(o,) = \/72'- BJ, -k (2.7
where
_ 2siny
/3(3-sin) @8
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and  is the dilation angle. The plastic potential function results in an associated flow rule
when the dilation angle equals the friction angle (so that p = & and g =f). The components of
the flow rule (the partial derivatives of g with respect to o) are

g _ % Bd
0. -~ POy 2.9)
do, 2 \/}’2
2.3.3.2 Cap Model. The Sandler-Rubin (SR) cap model proposed in Sandler and Rubin (1979)

is an isotropic rate-independent elastic-plastic material model based on the classical incremental
theory of plasticity. It has been used to model both high and low pressure mechanical behavior
of many geologic materials such as sands, clays and rocks because of its ability to simulate the
important characteristics of these materials: compaction, dilatancy, shear and hysteresis. The
yield surface consists of a fixed failure envelope given by

F,J) = I, = A-Cexp[B-J}] for J > L(x) (2.10)

and a hardening yield function (or cap) given by

Fo(d, %) = I, = %\/[X(x)-L(x)]z-[Jl-L(x)]z for L®)>J, >X(®) @.11)

where A, B, and C are the parameters defining the shear failure surface, J, is the first invariant
of the stress tensor, Jz’ is the second invariant of the deviatoric stress tensor, x is a hardening
variable related to the total plastic volumetric strain, X(x) and L(x) are the values of J, at the
intersection of the cap with the J, axis and center of the cap respectively, and R is the ratio of
the major to minor axes of the elliptical cap. In (2.11),

L(x) = x Fx <0 (2.12)
0 if x

v
(=]

and
X(x) = L(x)-R{A-Cexp[B-L(x)]}

L(x)-R-F,(L(x)). (2.13)

The hardening variable x is related to the plastic volume strain € (caused only by cap action)
through the relationship

€ = W{ew [D(X()-X,)]-1} (2.14)




Where Xj is the initial location of the cap, and to keep the cap from retracting (for rocks)

€ = min(&,0). (2.15)

v

The original SR cap was generalized to accommodate the anisotropic elastic CJM model.
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Figure 2-2. Sandler-Rubin cap model.

The failure surface of the SR cap model is also modified to account for different strengths in triaxial
extension (TXE) and triaxial compression (TXC). Specifically, the failure surface defined by

f= ‘/};' -RY (2.16)

is modified by ® resulting in a smoothly-varying yield surface in the n-plane, as shown in
Figure 2-3. R is given by

® =—=[1 + K + (1 -K)sin36] 2.17)

N |-

where 0 is the Lode angle which is related to the third-invariant of the deviatoric stress tensor,
and K=TXE/TXC limited to 0.778<K<1.0 to ensure a convex yield surface. Also shown in
Figure 2-3 are the familiar Mises-Schleicher (MS) and Mohr-Coulomb (MC) failure surfaces.
Note that the MS surface is obtained by fitting the model to TXC conditions and does not
account for any reduced strength in TXE. MC, on the other hand, is defined by straight lines
between TXE and TXC. Because some of the calculations performed by other DNA contractors
(presented in Section 3) were performed using the Willam-Warnke (1975) function, it is also
shown in Figure 2-3 to illustrate the differences between it and the failure surfaces just
described.
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Figure 2-3. Yield surfaces in the -plane.

It is well known that materials exhibit higher strengths when loaded at higher strain rates.
Because shock-loaded tunnels involve strain-rates as high as 10* sec'l, rate effects must be
accounted for. Unfortunately, only a limited amount of data is available at these high
strain-rates. Green and Perkins (1972) and others have measured a sharp increase (exponential)
in strength for strain rates above about 10% sec!.

In the high compressive states associated with shock loadings, rock becomes an almost plastic
material. Given the success of rate-independent cap models for representing this behavior, a
number of researchers have used two approaches in developing viscoplastic versions of the cap
model to represent rock under high loading rates. In the approach of Perzyna (1966), the
viscoplastic strain rate is a function of the level of overstress and a fluidity parameter A,

&g = A (6(N) 599-5— (2.18)
y

In (2.18), () can be chosen to match experimental data. In the Duvaut and Lions (1972)
approach, the viscoplastic strain rate is a linear function of the overstress, and a material constant
termed the relaxation time © that determines the rate at which the stress relaxes back to the
inviscid solution. The Duvaut-Lions model is given by

R _
& = -r-cy:,(oy-oy) (2.19)
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where C,, is the elasticity tensor, o, is the stress tensor and o, is the inviscid stress tensor. The
Duvaut-f,‘ilons model is attractive because of its simplicity and ease of implementation.

2.3.3.3 Limited Tension Algorithm. A limited-tension algorithm developed by Callahan (1989)
is used in the constitutive model to simulate tensile failure. In this algorithm the tensile strength
at each integration point T, is set initially to the intact tensile strength T,,. At each integration
point at each time step, the principal stresses (0,2 0,2 0,,) and their unit direction vectors

(#,, 8, B are calculated based on the trial stress state o“, at that location and time. Each
principal stress component that exceeds the tensile strength at the integration point T, is set to
the residual tensile strength T,. In addition, the tensile strength at the integration point is set to
T, if T, is exceeded. (Recall that tension is negative according to the sign convention, so
exceeding T, implies that the stress is less than T, and the stress is setto -T,.) The resultant
stress state is calculated by transforming the principal stress components back to the global
coordinate system while maintaining the original principal stress directions. This transformation
is accomplished according to the following equation:

o” = nnn” o, + nmnmo” + ntmnlmom (2.20)

where n, is the i*® component of unit direction vector #,.

2.3.3.4 Implicit Rock Joint Modelling. The compliant joint model (CJM) is a three-dimensional
elastic model used to represent the mechanical response of a rock matrix with joints (Labreche
and Petney, 1987). The model implemented in PRONTO2D is a two-dimensional version of the
CIM. The CIM assumes that the deformation of a jointed rock mass is caused by the
combination of the elastic response of the rock matrix and the elastic response of the joints. The
unfractured rock matrix is modeled as an isotropic linear elastic solid and the joints as a
nonlinear elastic layer. The model consists of up to four joint sets with various spacing and
orientation. The response of the CIM is effectively anisotropic due to the presence of the joint
sets.

The displacement behavior normal to the joint plane varies nonlinearly with stress and the
response is governed by the physical characteristics such as joint aperture, roughness and contact
between joint surfaces, strength of the wall rock, and presence or absence of filling. The
response is also governed by the recent movement history of the rock joint. The aperture change
of a well-mated joint without filling can be represented by a hyperbolic relationship between the
stress normal to joint plane and the joint closure (Goodman, 1976; Bandis, et al., 1983). The
form used in the CIJM is given by the equation

o =a o (2.21)

where,

Q
'

normal stress acting on the joint (compression positive)
half-closure stress (stress to reduce the aperture to 6/2

Q
'
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v, - joint normal displacement (closure positive, zero when o, 0)
d - maximum joint closure
m - exponent

The stiffness normal to the joint, k,, is defined by

do, _ vt
. av. = am W (2.22)

which is the slope of the nonlinear joint closure. This hyperbolic function is used in the
numerical formulation for the normal stress-displacement response when the normal stress is
compressive. A constant value of 1074 times the dilatational modulus, A -2, of the matrix is
used for joint normal stiffness when the normal stress is tensile. This stiffness defines a linear,
normal stress-normal displacement relationship for the joint in tension. This small but nonzero
stiffness avoids numerical singularities in the computations. The transmission of small tensile
stresses by elements having moduli four orders of magnitude lower than the matrix are accepted
as insignificant relative to typical compressive stresses.

The compressive normal stress-displacement relation is nonlinear and elastic. Thus, there is no
path dependence and all joint closure is fully recoverable in this model.

The shear response of joints generally consists of a nearly linear rise to peak shear strength,
followed by softening behavior with continuing shear. However, it is acknowledged that joint
size dependence may alter this. The peak shear strength response of joints is supported by
studies such as Goodman (1976) and Bandis (1983). The shear stress of joints is known to be
inelastic when the stress state approaches the peak shear strength. The CIM only models the
elastic joint shear response. The shear stiffness, which is independent of the normal stiffness
across the joint, relates the shear displacement to shear stress.

T =ky, (2.23)
where,
t - shear strength
k. - joint shear stiffness
v, - jointdisplacement tangent to plane of joint
The shear stiffness is defined by
A
kK = —.
s av 2.24)
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The CIM introduces anisotropy by reducing the composite modulus of the modeled rock mass in
the direction normal to the joint in an otherwise linear elastic material. Computation of effective
moduli is used to implement the softening effects of the joints. Stress equilibrium is the
underlying assumption in the combined response of the rock matrix and the joint sets. The
normal stress across the joint is equal to the stress in the rock matrix normal to the joint plane.
The shear stress on the joint is equal to the shear stress in the rock matrix parallel to the joint
plane.

Correspondingly, the strains in the rock matrix are combined with the strains in the joints
additively. That is, the effective compliance for the rock mass is the sum of the compliances of
the unfractured rock and the joint sets. The effective Young's modulus, E, normal to a joint and
the effective shear modulus, G, parallel to a joint, are

11,1
E E ks

(2.25)
G G ks

where E and G are the elastic moduli of the rock matrix, k, and k, are the normal and shear
stiffness of the joint set, and s is the spacing of the joints in the joint set.

2.3.3.5 Explicit Rock Joint Modelling. PRONTO treats contact as a kinematic constraint. That
is, the algorithm modifies the accelerations of the nodes along the contact region such that the
kinematic constraints are satisfied. The algorithm uses a partitioned approach to enforce
compliance between two contact surfaces by allowing each surface to act as a master surface for
a fraction of each time step and a slave for the remainder.

There are four steps involved in the contact algorithm. First, the contact surface geometry is
recalculated at each time step and the predicted configuration is computed by integrating the
motion without regard to the kinematic constraints required by the contact surfaces. The
following quantities are calculated for each node:

a = fim
¢ = v+Ara (2.26)
£ = x+At9

Where f is the residual force vector (sum of external forces minus the sum of internal forces), m
is the nodal mass, v, is the current velocity, and At is the time increment. The predicted
kinematic quantities are denoted by the hat.
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The second step is surface tracking, or the process of matching nodes along one surface with the
mating surface. The algorithm used is to locate the spatially nearest master node to the possible
point of contact. This procedure can be the most time consuming portion of the analysis for this
type of problem. To streamline the tracking algorithm, the nearest master node to a given slave
node at one time step is assumed to be in the vicinity of the nearest master node at the next time
step. Therefore, at each time step, the nearest master node is the starting point for the search
along the surface.

The next step is to determine contact or penetration. The slave node is oriented with respect to
the master segments connected to the tracked master node. The depth and position coordinates
are calculated for both master segments connected to the nearest master node. From these
quantities, if the depth is positive, the slave node is penetrating the segment and if the position is
positive then the slave node is along the segment. When the master surface forms an outside
corner, there may be penetration of both segments. In this case, the algorithm determines with
which master segment the slave surface is more strongly in contact. One limitation of the
algorithm is that it can not detect a contact surface contacting itself.

The final step in the contact algorithm is to calculate the penetration forces imposed on the
master surface by the slave surface to restore kinematic compliance. These forces are calculated
as a fraction of the forces that would be imposed by the slave nodes if the master surface was
rigid. This fraction is based on the fraction of each time step for which the surfaces act as
master and slave. The roles are reversed for the remaining fraction of the time step. The
accelerations are calculated to predict the response of the master surface to these penetration
forces such that the response of each contacting slave node is constrained by its master nodes.
The principle of virtual work is employed to define the accelerations of the master nodes in
response to the penetration forces. When friction is present, the relative tangential motion of the
contacting slave nodes is resisted. The magnitude of the tangential force exerted on the master
surface on a slave node cannot exceed the friction force. Thus friction adds a tangential
acceleration to the nodes in contact.

2.3.4 Transmitting Boundary Conditions.

A transmitting boundary is used to simulate a semi-infinite domain outside the boundary, where
the wave speeds of the material on both sides of the boundary are the same. The region exterior
to the boundary is replaced with an energy-absorbing boundary condition that behaves as if the
energy is transmitted across the boundary. Thus, no energy is reflected back into the interior
region.

The nonreflecting boundary is implemented in PRONTO according to a technique proposed by

Lysmer (Lysmer and Kuhlemeyer, 1979). The basic idea is to apply tractions at the boundary
that will exactly cancel the stresses that would be reflected from a free surface. Hence, the
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numerical technique involves calculating and applying the following tractions to the surface of
the nonreflecting boundary

o = pVu

p
2.27)
T, = -pVi

s st

where o, and t, are the normal and shear tractions; p, V_, and V, are the current density,
compressional wave speed, and shear wave speed of the material along the boundary; and i, and
i, are the normal and tangential components of the current velocity at the boundary. At each
time step, PRONTO updates the tractions at the boundary using the current density and effective
dilatational and shear moduli in each element along the boundary.

In calculating the current wave speeds, PRONTO assumes that the wave speeds are isotropic and
independent of the orientation of the boundary. Obviously, the joint sets in a rock mass yield an
anisotropic medium in which the wave speeds depend on the incident direction. However, the
anisotropy inherent in the CIM is not accounted for in the wave speed calculation in PRONTO.
Consequently, the wave speeds used to calculate the tractions along the nonreflecting boundary
are somewhat in error, the magnitude of which depends on the orientation of the boundary with
respect to the principal directions of the anisotropy. This error results in a partial reflection of
the incident stress.

15




SECTION 3

VERIFICATION AND VALIDATION OF DETERMINISTIC TUNNEL MODELS

3.1 INTRODUCTION.

The quality of probabilistic predictions is highly dependent on the quality of the underlying
deterministic model. For complex problems that have no analytical solution, the quality of the
deterministic model can be measured qualitatively in terms of confidence gained by applying the
model and comparing predicted results with test measurements for a variety of different
configurations and loadings.

The process of obtaining confidence in the deterministic model can be termed verification and
validation. Verification involves comparing predictions to either known solutions, or comparing
predictions that have no known solution to independently made predictions using other methods.
While the former is preferable, comparing to independently obtained solutions can be an
effective way to augment the suite of verification problems. When a numerical model is said to
be verified, it is assumed to be working as intended and be free from errors, bugs, and numerical
inaccuracies.

The process of validating a numerical model involves comparing predictions made using the
numerical model with experimental results. The process is much more difficult than
verification, and in reality, can never be-achieved completely. However, a model is usually
accepted as being validated if it has been demonstrated to be able to predict all significant
physical processes observed and measured in a similar test.

To establish confidence in the numerical models, SWRI participated in two large verification and
validation programs, which are summarized in the following sections. The Benchmark Activity
described in Section 3.2 focuses primarily on model verification and the Precision Test
Modeling program described in Section 3.3 is concerned with model validation. Both of these
models are then integrated with the probabilistic methods described in Section 4 and applied to
several DNA selected problems in Section 5.

3.2 BENCHMARK ACTIVITY.

The goal of the benchmark activity was to show the influence of calculational approach on the
predicted response of a circular tunnel in a jointed rock mass subjected to ground shock loading.
The benchmark problems were artificial problems that tested the modeling capabilities and
limitations of the finite element and distinct element computer codes used by the participants.
The final benchmark calculation was preceded by several preliminary calculations based on
simpler but related problems. The common element in the calculations was the geometric and
material description of the joints and intact rock. All but two of the problems solved had
analytical solutions to compare calculational results to.

The participants in the Benchmark Activity were RE/SPEC (under subcontract to SWRI), R & D
Associates (RDA), California Research and Technology (CRT, and now TRT), Weidlinger
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Associates (WA), Itasca, and Lawrence Livermore National Laboratory (LLNL). The
benchmark activity has been well documented, so only a brief summary will be presented in
here. More information can be found in Simons (1993), Senseny and Simons (1994), and Osnes
(1991).

To summarize the effort, several bugs and modeling errors were discovered and resolved by all
of the participants during the course of working through the benchmark problems. The results
for the final problem, which involved a deep tunnel in an explicitly-jointed rock mass subjected
to stress wave loading, three of the participants (CRT, WA and Itasca) obtained (remarkably)
similar tunnel deformation results. Using PRONTO, RE/SPEC obtained tunnel closures that
were substantially higher than the "consensus" answer. It is believed that the larger
deformations were due to the explicit joint modeling approach described in Section 2. However,
because an analytical solution is not available combined with the fact that PRONTO performed
extremely well on all of the other benchmark problems, some question remains as to which
answer is actually correct.

3.3 PRECISION TEST MODELING.
3.3.1 Static Tunnel Tests in Limestone.

In many model validation efforts, predictive models are simply "calibrated" to agree with
experimental results. This is true both for constitutive models calibrated to laboratory data and
for structural response models calibrated to structure test data. Because of this practice, the
fidelity of the model is unknown when used to predict behavior of real-world problems. This
necessarily reduces the confidence one should have in predictions made using calibrated models.

One way to assess the fidelity of a predictive model is to apply the model to a non-trivial
laboratory problem that is representative of the real-world problem without any prior knowledge
of the test results, and then critically assess the performance of the model against the
experimental results. This approach is the one being taken in the Precision Test Modeling
(PTM) program sponsored by the DNA. The goals of PTM are to reveal if and where more
research and development is needed, explore the influence of computational approaches on the
outcome of the numerical simulations, and identify where modeling approaches differed and the
relevance of those differences. The motivation for such an effort is to validate the ability of
current state-of-the-art predictive models to simulate real-world problems. The PTM program
consists of laboratory material tests, small-scale structure tests, and numerical predictions. Only
the numerical predictions are summarized here.

The PTM participants were: Schwer Engineering & Consulting Services (SE&CS under
subcontract to Aptek), Southwest Research Institute (SWRI), Titan Research and Technology
(TRT), and Weidlinger Associates (WA). The static and dynamic tunnel tests were performed
by SRI (Simons, et. al., 1993).

In the next two sections, the static and dynamic tests are described and the material property data
used in the exercise tabulated. Next, the calculational methods and constitutive models used in
the analysis are described followed by comparisons between calculations and experiments.




Finally, some interpretation from the comparisons and recommendations for further research are
given.

3.3.1.1 Description of Static Tests. The static tests consisted of cylindrical test specimens
containing lined and unlined tunnels. Several load paths were tested, and pressures, strains and
tunnel deformations recorded. From the suite of tests, three were selected for analysis in the
PTM program, herein referred to as ST1, ST2, and ST3. The general configuration is shown in
Figure 3-1. The test specimens were all 30.5 cm diameter cylinders taken from a single block of
Salem limestone. The specimen used in ST1 was 30.5 cm high with a 1.91 cm unlined tunnel
spanning the diameter of the specimen at midheight. The ST2 and ST3 tests both used cylinders
that were 45.7 cm high (to reduce end effects) with a lined tunnel also spanning the diameter of
the specimen at midheight. The liners were fully annealed 3003 aluminum tubes with an inside
diameter of 18.6 mm and a wall thickness of 0.89 mm.

The ST1 test subjected the unlined tunnel to a single uniaxial strain load-unload cycle. In ST2,
the lined tunnel was also loaded in uniaxial strain, but two load-unload cycles were performed.
The uniaxial strain path is of interest because it is similar to the loading on underground
structures from detonations above ground level. In ST3, the loading approximated a
spherically-divergent strain path similar to that from a spherical wave propagated by an
explosion at or below ground level. The ST1, ST2 and ST3 loadings are shown in Figure 3-2
(described in subsequent sections).

Copper Cap Top View
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d 7[‘: l |€2 /Tunnel
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l 1l /
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T 7.6 €&
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1 [ Test h/2 (cm) d(cm) Dt (cm) t (cm)
}— 305 —% ST 15.2 1.91 unlined  unlined
. . ST2 229 2.07 1.86 0.089
Side View 22.9 2.07 1.86 0.089

Figure 3-1. SRII static test configuration.
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Figure 3-2. Sandler-Rubin cap model. Also shown are the load paths from the SRII static tunnel tests and
the smooth cap model.

3.3.1.2 Material Properties, A significant amount of test data for Salem limestone has been
amassed by several laboratories working independently (ARA, SRI and RE/SPEC Inc.).
RE/SPEC was tasked with performing specific tests needed to characterize the parameters in the
Sandler-Rubin cap model; thus, the PTM participants were directed to use the RE/SPEC data
(Fossum, et. al., 1995) for the cap model parameters. RE/SPEC performed a large number of
hydrostatic compression, triaxial compression and uniaxial strain tests on Salem limestone
samples taken from the same blocks SRI used to construct the static and dynamic specimens.
RE/SPEC performed two different fits to their data. The first, denoted RE/SPEC-93, was
provided to the PTM participants at the start of the PTM program. The second fit, denoted
RE/SPEC-94, included lateral strain measurements and ultimate shear data, presumably to
improve the fit. The RE/SPEC-93 data was used for this study because the RESPEC-94 data
was not available until late in the program. For completeness, Table 3-1 lists both sets of

properties.

The lined static and dynamic tunnel tests used aluminum liners. From pressure tests performed
on the liners, SRI measured Young's modulus and Poisson's ratio to be 75.9 GPa and 0.28
respectively. Since significant inelastic deformation on the liners is expected in the tunnel tests,
SRI also measured and reported the effective stress-effective strain response of the aluminum.
The experimental and predicted stress-strain curves are shown in Figure 3-3.
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Table 3-1. Sandler-Rubin cap model properties for Salem limestone.
Parameter Description RE/SPEC-93 RE/SPEC-94
K (MPa) Bulk Modulus 15725 16214
G (MPa) Shear Modulus 9112 9531
A (MPa) Failure Surface Parameter 689.5 199.43
B (MPa™) Failure Surface Parameter 3.9e-4 1.922¢-3
C (MPa) Failure Surface Parameter 673.2 185.77
D (MPa™) Hardening Parameter 1.44e-3 8.616e—4
W Hardening Parameter 0.08266 0.108
R Cap Shape Parameter 4.215 5.63
X (L) (MPa) Cap Location Parameter -468.1 (-193.323) | -441.26 (-131.217)

Effective Stress (MPa)

100

] s !

0 1 2

3 4

Effective Strain (%)

Figure 3-3. Comparison of experimental and predicted aluminum liner response.

3.3.1.3 Calculations. Various finite element discretizations were used to model the static
tunnel tests. SWRI and WA used full three-dimensional 1/8 symmetry models. TRT and
SE&CS used "slab" models, which neglected the outer curvature of the cylinder. Since the
tunnel responses of interest were at the center of the cylinder, the error in neglecting the outer
curvature was believed to be small. For ST2 and ST3, frictionless contact was assumed
between the liner and the rock.
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Responses compared included axial and circumferential strains at €, and €, (see Figure 3-1)
and springline and crown-invert tunnel closures.

All four calculators obtained static solutions using their dynamic codes: SE&CS, SwRI and
TRT applied the loading at a very slow rate (quasi-static), and WA used dynamic relaxation.
The calculations were initially performed using a two-invariant cap model, and comparisons
between calculators made. Since all except SE&CS used exactly the same two-invariant model,
this allowed a consensus check to be made before employing three-invariant models. The
quasi-static simulation time varied by calculator; SWRI used 20 ms.

3.3.1.4 Results and Discussion. Predicted closures from the ST1 static tunnel simulations are
shown in Figures 3-4 and 3-5. Using the two-invariant models (Figures 3-4a and 3-4b),
relatively good agreement between participants is seen for crown-invert and springline closures.
The fact that SWRI, TRT and WA obtained similar results is because they used the same
two-invariant model. SE&CS, on the other hand, used a different model (see Figure 3-2) and
obtained different results. Comparisons between experiment and predictions in Figures 3-4a
and 3-4b show considerable disagreement. The crown-invert closures are about 2%-3% higher
than experimental and the springline closures are about 13% lower than experimental.

In an attempt to improve the closure predictions, three-invariant yield surface models were
employed. The results are shown in Figures 3-4b and 3-5b. As seen, the desired effect was
obtained — the springline closures increased. However, the scatter in the predictions also
increased. Since WA and TRT results compare very well, and also since they both used the
same three-invariant model, the scatter between all participants appears to be due to the use of
different 3-invariant models. This indicates that closure, or more generally structure behavior,
is very sensitive to the shape of the yield surface.

a) 2-Invariant b) 3-Invariant
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Figure 3-4. ST1 Crown-invert closures: a) 2-invariant, b) 3-invariant.
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Figure 3-5. ST1 Springline closures: a) 2-invariant, b) 3-invariant.

Results for the ST2 and ST3 tests, both of which include liners, are shown in Figures 3-6 to 3-9.
Figure 3-6a shows good agreement between the predictions and the experimental results. The
effect of including the third-invariant was small as shown in Figure 3-6b. It is interesting to
note that SE&CS predicted very little recovery during unloading (nearly horizontal lines),
which closely resembles the test data. None of the other participants predicted this.
Explanations for this were postulated to be due to different liner constitutive models and/or
closures being measured on the rock versus the liner. Side studies performed by the
participants did not support these theories; thus, other factors may be to blame, such as the use
of continuum vs shell elements to model the liner.

Springline closures for ST2, unlike the crown-invert, showed much larger variation in
prediction when the third-invariant was included. As seen from Figure 3-7a, predictions made
using a two-invariant model were in reasonable agreement with experimental results. The
inclusion of the third-invariant had the same overall effect that it did for ST1 — springline
closures were much larger and the scatter between predictions increased. Again, this scatter is
due to the use of different three-invariant models.
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Figure 3-6. ST2 Crown-invert closures: a) 2-invariant, b) 3-invariant.
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Figure 3-7. ST2 Springline closures: a) 2-invariant, b) 3-invariant.

Crown-invert and springline closures for ST3 are shown in Figures 3-8 and 3-9 respectively.
Two-invariant models greatly underpredict both the crown-invert and springline closures.
Similar to ST1 and ST2, the crown-invert closure was relatively unaffected while the springline
closures generally increased upon inclusion of the third invariant. SE&CS's closure results
grew very large because their calculation predicted that stresses in the free-field (i.e., the entire
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specimen) reached the failure surface. That this is the case can be seen in Figure 3-2, where the
ST3 load path contacts the Smooth Cap (SM) cap failure surface. Their closure results,
however, should be simply taken as qualitatively "large" since complete closure and specimen
failure will occur due to the fact that the failure surface is perfectly plastic. The fact that the
ST3 load path comes very near to the Sandler-Rubin (SR) failure surface indicates that SWRI's,
TRT's and WA's closures may be very sensitive to small changes in input parameters.

a) 2-Invariant b) 3-Invariant
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Figure 3-8. ST3 Crown-invert closures: a) 2-invariant, b) 3-invariant.
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Figure 3-9. ST3 Springline closures: a) 2-invariant, b) 3-invariant.
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Also worthy of note is the fact that in no case was the initial slope of the closure-load curve
predicted well by the models. At both the crown-invert and springline location, the closures are
overpredicted by the models. Although including the third-invariant did increase the final
closure, it had little effect on the initial closures. This suggests that material property data may
be incorrect, or other mechanisms not included in the models may be involved, such as
hardening. ‘

Two observations are made based on the static tunnel simulations:

1. Load-control quasi-static problems can be extremely sensitive to small changes in the
material model or other inputs. Close attention has to be paid to loading rate and mesh
discretization.

2. Static problems are useful for verifying dynamic response computer models, but they can be
highly-sensitive to small changes in material parameters, and can introduce additional error
if true quasi-static conditions are not achieved.

3.3.2 Dynamic Tunnel Tests in Limestone.

3.3.2.1 ription ic (SWAT-II) Tests. In the spherical wave tunnel (SWAT) test
under consideration, a spherical explosive charge was detonated in a block of limestone
containing five tunnels. Recorded data from the experiment included particle velocities and
stress histories at several locations, and post-test tunnel deformations. The general
configuration is shown in Figure 3-10. The specimen is an octagonal block of limestone 1.2 x
1.2 x 1.67 m with a 111-g spherical charge of pentaerythritol tetranitrate (PETN) at the center
of the block. The two tunnels selected for analysis were both lined and located at distances of
14.5 cm and 19.2 cm from the center of the PETN charge. The tunnels were of the same
diameter and liner material as those in the static tests. Stress and particle velocity gages were
located as indicated in Figure 3-10.

Calibration to test data is required to determine either the modified material properties used by
TRT or the Duvaut-Lions relaxation parameter t used by SE&CS and SwRI. Two approaches
were taken: 1) fitting to an "average" strength increase of 40%, and 2) fitting to the SWAT-II
free-field velocity or stress measurements. The 40% "average" strength increase was taken
from limited testing performed by ARA on Salem limestone. For the remainder of this report,
the first approach will be referred to as "uncalibrated" and the second approach as "calibrated."
The term "calibrated" is used because a portion of the SWAT-II experiment (free-field
response) is used to predict the tunnel behavior, i.e., the predictions using "calibrated"
viscoplastic models were not made completely independent from the test data. The values for
t estimated by SE&CS and SwRI are given in Table 3-2.




DF (mild detonation
fuse)

i W 18 Particle /
Concrete —| Velocity Loops
6961-T6 Al Shell | s
1- : T i
(1.58 om thick) : : 972
o : : (E/CE ) 122
6 Stress Gages—_| | ! ! 3 cm

i i yPETN 0.76 m N

~ : NE

\EL . NH

EM Coil H a . 1
V=l ¢t
[~ / ' ' 1.87m  Radial Leads !
’
18PV Gages—/ / E E 76 m Range ca Range R Range
1 ' d {em) ge (cm) a (cm)
5 Tunnels | E ; PV-15 | 780 |PV5 | 1333[PV-9 | 20.00
(1.91 cm-dia.) ' ‘ ' PV-2 PV6_ | 1500 | PV-10 | 21.67
, ' PV-3 PV-7 16.67 | PV-11_| 23.33
V-4 PV-8_|_ 18.33
Figure 3-10. SWAT-II test configuration.
Table 3-2. Duvaut-Lions viscoplastic parameter values.
Relaxation Parameter ©
Participant __Calibrated Uncalibrated
SE&CS 5.e-6 5.e-6
SwRI 6.e-6 12.e-6

3.3.2.2 Calculations. As in the static tests, various finite element meshes were used to model
the dynamic tunnel test. SE&CS and WA used full three-dimensional models. SwRI, while
originally using a full three-dimensional model, eventually switched to a "wedge" mesh to
reduce the number of elements and speed up the calculations, shown in Figure 3-11. TRT also
used a wedge-shaped grid. Frictionless contact was assumed between the liner and the rock.

Mesh refinement studies were performed by the participants. Consensus reached was that at
least five rings of 32 elements around the circumference of the tunnel were required to
adequately model the complex tunnel wall deformations and stress gradients. Beyond this, each
participant was free to mesh the remainder of the model.
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Figure 3-11. SWRI SWAT-II wedge mesh.

In Figure 3-10, the charge cavity radius is 7.5 cm, which is the location of the PV-1 velocity
gage. Thus, the detonation of the PETN was not simulated in the calculations. Instead the
recorded velocity transient at PV-1 is used as the driver for the calculations.

Responses from the calculation include velocities and stresses at the gage locations, and
springline and crown-invert tunnel closures. The free-field (no-tunnel) environment was
computed first to facilitate comparison between calculators, and to compare with the free-field
measurements taken in the experiment. The simulation time is 250 ps .

3.3.2.3 Results and Discussion, Predictions of free-field velocities were computed and
compared at gage locations PV-2, 5, 8 and 11. Using rate-independent models, the predictions
agree with each other and with experimental results very well. The only exception is that from
PV-5 through PV-11 the predicted peak velocity is truncated. However, the time-of-arrival,
loading slope, positive phase and negative phase all agree quite well. Employing rate models,
SE&CS, SwRI and TRT were able to improve the correlation with test data. The same general
conclusions can be made with stresses, which were computed and compared at R=14.5 (see
Figures 3-12 and 3-13) and 19.2 cm. In general, the free-field velocities and stresses were
found to be much less sensitive to the material model than the static test cases.
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Figure 3-12. Free-field radial stresses at R=14.5cm. Predictions based on rate-independent model.
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Figure 3-13. Free-field radial stresses at R=14.5cm. Predictions based on rate-dependent models:
a) uncalibrated, b) calibrated.
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While rate-dependent models did introduce additional scatter in the predicted results, this was
outweighed by the much better correlation with test data. As will be discussed in the following,
this was not generally the case with tunnel closures.

Tunnel closures for the R=14.5 cm and R=19.2 cm tunnel are shown in Figures 3-14 to 3-17.
For the R=14.5 cm tunnel, the rate-independent models were in rough agreement (within 2%)
with experimental data at the crown-invert, and aithough to a lesser degree, also at the
springline. Except for SWRI's results, which agreed with experimental results, the
rate-independent models underpredicted crown-invert closure and agreed fairly well at the
springline for the R=19.2 cm tunnel.

Both SE&CS and SwRI saw very little change in their crown-invert closure predictions when
rate-dependence was included for both the R=14.5 cm and 19.2 cm tunnels. However,
springline closures changed dramatically. The inclusion of rate-dependence changed SE&CS'
and SwRI's closures from 2.5% to -1.5% for the R=14.5 cm tunnel and from 1% to -1% for the
R=19.2 cm tunnel. These predictions actually agree with the experimental (negative) closures
during early times (i.e., springline openture is measured). Unlike the rate-dependent
predictions, however, the experimental springline opentures quickly reverse and become
closure. Using their rate-dependent model, TRT predicted higher closures at both the
crown-invert and springline locations for both tunnels.

SwRI's and TRT's results for "uncalibrated" and "calibrated" rate-dependent models are also
shown in Figures 3-14b to 3-17b. As expected, predictions made using calibrated rate models
were closer to experimental results; however, the overall quality of the prediction is not
improved by much.
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Figure 3-14. SWAT-II crown-invert closures for R=14.5 cm tunnel: a) rate-independent, b) rate-
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Figure 3-17. SWAT-II springline closures for R=19.2 cm tunnel: a) rate-independent, b) rate-
dependent. '

By including rate-effects, TRT predicted fundamentally different behavior than did either
SE&CS or SWRI. TRT used independent rate-enhancement relations for the failure surface, cap
hardening, and three-invariant yield surface relations. SWRI and SE&CS used the
Duvaut-Lions linear overstress model. Since the Duvaut-Lions model is implemented within
the constitutive model, it accounts for the spatial and temporal variation in strain-rate. In the
Duvaut-Lions model, the yield surface is effectively moved outward (actually the viscid
solution lies between the elastic and inviscid cases), which explains why stresses are higher
(less yielding) and deformations are lower (material is stronger). Since both SE&CS and SwRI
qualitatively agree, their models appear to be consistent. While the specific details of how TRT
modified their cap parameters to reflect dynamic effects is unknown, this approach is probably
what sets TRT apart from SE&CS and SwRI.

3.3.3 Summary of PTM Exercise.

It is clear from this exercise that more research is needed to develop "fully-defined" material
models for large-deformation high strain-rate loading of geologic materials. For instance,
calculations agreed fairly well with each other when the stress states were predominately
triaxial compression, but differed significantly otherwise, indicating a large sensitivity to the
shape of the yield surface in the m-plane. Upon further investigation, an equally large
sensitivity was found in the details of how the shear failure and cap (crush) surface intersection
was handled. Large variations in predictions also occurred when strain rate effects were
accounted for.

Comprehensive testing programs should be carried out in conjunction with numerical modeling
efforts to determine which effects are important and which are not. For example, standard
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material tests on geologic materials primarily probe the compressive meridian of the failure
surface. Through comparisons of numerical predictions in the current study, it was found that a
significant portion of the structural response was due to yielding closer to triaxial extension
than compression; however, the test data available to the modelers provided little guidance for
defining the model in this regime. The next logical step is to take the lessons learned from the
numerical predictions back to the laboratory and obtain more test data and repeat the modeling
exercise. Beyond characterizing the location and shape of the failure surface, test data is also
needed to characterize joint behavior, material damage, and flow direction.

Several conclusions from the PTM study can be made:

1. The constitutive models capture the main effects in large-deformation high strain-rate
loading of geomaterials; however, predictions made using these models were sensitive to
small changes in the model. This suggests that further research and model development is
needed.

2. More comprehensive and possibly non-standard testing is needed to fully define the material
behavior. The testing must be performed in conjunction with the modeling effort, as
opposed to being performed once before the modeling effort begins.

3. Close attention must be paid to the modeling details such as loading rates, grid refinement
and boundary conditions. An experienced and knowledgeable analyst is perhaps the key
factor in obtaining high-quality solutions to complex highly-nonlinear numerical
simulations.

The objective of SWRI's participation in the verification (Benchmark Activity) and validation
(Precision Test Modeling) programs was to develop an accurate deterministic numerical model
for predicting tunnel deformation under high stress wave loading and establish confidence with
the DNA in our ability to apply the model. The approach taken was to enhance the PRONTO
solid dynamics program for modeling geomaterials and apply it to realistic problems by
participating in verification and validation exercises. The results indicate that solutions
obtained using the enhanced PRONTO model are quite good overall, and at least as good as
most other numerical models currently in use. This provides confidence in probabilistic
predictions made using the enhanced PRONTO model.
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SECTION 4

PROBABILISTIC ANALYSIS METHODS

4.1 INTRODUCTION.

The fundamental problem faced in probabilistic structural analysis is that of propagating input
parameter uncertainties through a numerical model to compute the response uncertainty. Once
the response uncertainty is known, the probability of failure is quantified and can be used to
make decisions regarding design changes, etc. Since the numerical model is usually
computationally-intensive to evaluate, the challenge is then to develop a probabilistic analysis
methodology that can obtain solutions nearly as accurate as Monte Carlo simulation, but at a
much more reasonable cost.

Most of the probabilistic algorithms described in this Section are based on a class of methods
known as fast probability integration (FPI), which have been shown to be extremely efficient
relative to Monte Carlo simulation with comparable accuracy. For probabilistic finite element
analysis, the Advanced Mean Value (AMV) method is recommended. Two simulation
methods—Latin hypercube and Adaptive Importance Sampling—are also found to be useful for
verifying other approximate methods.

4.2 UNCERTAINTY MODELING.
4.2.1 Random Variables and Systematic Errors.

Input uncertainties arise as a result of naturally occurring variations, called randomness, in
quantities such as material properties, joint spacing, or loading. Another form of uncertainty can
be identified as modeling or systematic error, which includes errors introduced into the
calculations by the use of simplified models (deterministic and probabilistic), human error, and
bias. Randomness is intrinsic to nature and beyond our ability to control, as compared to
systematic error which can be reduced by some degree.

Random variables are modeled using a joint probability density function (pdf). The joint pdf
provides a mathematical relation for describing how the input parameters vary. Definition of a
marginal pdf (i.e., for a single variable) is typically made using a mean value g, a standard
deviation o, which is a measure of the scatter, and a distribution type, which defines how the
scatter is distributed. As an illustration, Figure 4-1 shows the pdf for a variable with the same
mean (30,000) and standard deviation (3000), but with different distributions (normal and
extreme value).
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Figure 4-1. Normal and extreme value pdf.

To determine the parameters of the random variables, statistical tools such as the graphical
method, method of moments, method of maximum likelihood, least squares estimators, and
Bayes' estimators can be used (Ang and Tang, 1984). However, in most cases the accuracy of
the selection is not clear, especially for the selection of the distribution type. Therefore, methods
have been developed to test the quality of these parameters such as hypothesis testing and
goodness of fit tests.

Approaches for modeling random variables and systematic error in geomechanics problems are
discussed in Torng and Thacker (1992b). The various types of uncertainties discussed are
broadly classified as being either reducible or irreducible, corresponding to systematic error and
randomness respectively. The approach taken is to use a probabilistic approach to treat both
types of uncertainties. Irreducible uncertainties are modeled as random variables, which results
in a corresponding uncertain response. Reducible uncertainties, on the other hand, are treated by
assuming that the mean and standard deviation of the reducible random variables are random,
which results in a confidence bound on the calculated probability. Another option for treating
reducible uncertainties is to perform two (or more) probabilistic calculations to bound the true
solution. Although the form of the result from bounding analyses bear some resemblance to
confidence bounds, the manner in which the underlying uncertainty is reflected in the bounds is
different. More discussion on confidence bounds is given in Section 4.8.
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4.2.2 Random Fields and Spatial Variability.

In geomechanics, spatial variability can be a large source of uncertainty. Variables possessing
spatial or temporal variability in addition to inherent randomness are modeled as random fields.
An example of a random field is the spatial variation of a random material property within a
layer of soil or rock. Because the material property between two points {i, j} are likely to have
similar values if they are located close to each other, the property is said to be spatially
correlated. A fully correlated random field implies that if the material property at one point in
the layer is known, all other points in the layer are also known. At the other extreme, fully
uncorrelated random field implies that the material property at point i is independent of point j
regardless of how near point { is to point j . In most cases, the random field is partially
correlated.

Since the true correlation is difficult to measure between every point i and j , correlation
functions are usually used that describes the manner in which the correlation decays with
distance or time. A typical correlation function is

4

1

b, = e 4.1)

where A is the distance between points { and j and [ is the characteristic length. The
characteristic length is estimated, measured, or related to other characteristics such as the scale
of fluctuation. Given the mean and standard deviation at all points within the field (usually but
not necessarily the finite element nodes for spatial fields) and the correlation matrix, a new set of
uncorrelated random variables can be obtained by transformation. This new set of random
variables are then used in the probabilistic analysis. The transformation is exact if the original
variables are normally distributed. Further details on modeling random fields in probabilistic
finite element calculations are given in (SwRI, 1991).

4.3 LIMIT STATE FUNCTION.

Given a deterministic tunnel response model such as those described in Section 2, tunnel response
can be represented in the form of a response function such as:

ZX) = Z(X,, X,, ..., X,) (4.2)

where Z (X) represents the tunnel response (e.g., closure) and X, are random design variables
such as material properties, geometry, or loading. To indicate failure, a limit state function can
be written in terms of Eqn. (4.2) as

gX) = 2(X)-2, =0 4.3)

where Z, is a value of Z(X) such that g(X) = 0 denotes the boundary between failure and non-
failure. Thus, Eqn. (4.3) separates the design space into "fail" and "safe" regions. The
probability of failure p, = P [g(X) < 0] is defined as the cdf value of Z at Z, or

p, = fn ffx(X)dX 4.4)
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where f, (X) is the joint probability density function for X and Q is the failure region given by
g < 0. The complete cumulative distribution function (cdf) (ranging from 0% to 100%
probability) can be constructed by simply varying Z; and re-evaluating Eqn. (4.4).

Except for a few trivial cases, Eqn. (4.4) has no closed-form solution. Thus, numerical methods
such as simulation or numerical integration must be used. In the following sections, several of
these methods are briefly described.

4.4 SIMULATION METHODS.

Simulation methods repeatedly evaluate the deterministic model to generate a sample of the
response, from which the statistics (e.g., mean, standard deviation, etc.) are approximated. A
major advantage of simulation is that the deterministic model does not have to be simplified or
approximated to perform the analysis. Also, most simulation methods are exact as the number
of simulations approaches infinity, which makes it attractive for checking or verifying an
approximate method of probability calculation. The main disadvantage to simulation is that the
probabilistic analysis can become quite costly if the deterministic model is complex. Even if the
deterministic model is simple to evaluate, the analysis can get time consuming if small failure
probabilities are to be estimated, which is usually the case. “This can be demonstrated using the
relation,

1- p,
pr

% error = 200 4.5)

where p,is the failure probability and N is the sample size (Shooman, 1968). There is a 95%
chance that the percent error in the estimated probability will be less than that given in

Eqn. (4.5). Table 4-1 gives the total analysis time for various probability levels and
deterministic function evaluation times based on 5% error.

Table 4-1. Monte Carlo simulation analysis times based on 5% error.

Analysis Time if 1 function evaluation takes:

N

ls

1m

1 hr

1,600

27 m

27 hr

67 days

14,400

4 br

10 days

1.6 vears

158,400

44 hr

110 days

18 years

3 years

182 years

1,598,400

19 days
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Because of the extremely long analysis times that can result as illustrated in Table 4-1, many
efficient sampling methods have been developed. Two such methods are described in the
following sections after a brief review of the direct, or Monte Carlo method.

4.4.1 Monte Carlo Simulation.

Monte Carlo simulation is the most straightforward simulation method. For independent random
variables, the steps involved are:

1. Generate an input vector by sampling from the input variable pdf's,

x, = F' () (4.6)

where u is a random selection from a uniform distribution, U[0,1], and FX" ! is the inverse cdf
function of x.

2. Calculate the deterministic response, Z(X).

3. Evaluate whether or not failure has occurred, g(X) = Z(X) -Z,<0?

4. Repeat steps 1-3 N times.

5. Calculate p,= N/N, where N, is the number of samples resulting in g(X)< 0.

More details on the generation of independent or dependent random numbers, mapping from
uniform to other distributions, and the calculation of response statistics are given in (Ang and
Tang, 1984).

4.4.2 Latin Hypercube Simulation.

Monte Carlo simulation can yield accurate failure probabilities provided the number of
simulations is sufficiently large. Because failure probabilities are typically small, however, the
required number of simulations and the calculational time required to perform a single
simulation render this method impractical for most structural reliability applications (see

Table 4-1).

Accuracies commensurate to that of standard Monte Carlo but with fewer required simulations
can be achieved with constrained sampling schemes. One such scheme is Latin Hypercube
simulation (LHS) (McKay, et al., 1979). The basic idea in LHS is to distribute the samples such
that the range of each variable is efficiently covered. In LHS, each of the k random variables is
divided into n non-overlapping intervals based on equal probability, thereby creating k x n
subregions in the probability space. One sample is taken from each subregion based on the
probability density in that region. Next, the n values for the first random variable are paired
with the » values for the second random variable, and so on for all of the random variables. The
n random vectors of length k are then used to perform the simulation.




The pairing of the variables in LHS can be performed in such a manner to induce a user-
specified correlation between any two random variables (Iman and Conover, 1982). The
induced correlations are based on the non-parametric technique known as rank correlation,
which remain meaningful in the presence of non-normal distributions. LHS was used by
Thacker and Senseny (1994) to verify a probabilistic cap model simulation involving correlated
non-normal variables. This will be discussed further in Section 4.7.

4.4.3 Adaptive Importance Sampling.

The approximate response function around the MPP (see Section 4.5) developed using the
AMV+ (see Section 4.6) method provides only approximate probability without error estimates.
It might be necessary to confirm the solution with minimal extra computations. One approach is
to use an importance sampling method that performs sampling only in the region close to the
MPP. There are several ways to develop importance sampling regions. In the adaptive
approach proposed in (Wu, 1994), the initial sampling region is generated based on the AMV+
function and gradually increased by moving the sampling boundary until the sampling region
covers the failure region sufficiently.

Figure 4-2 illustrates a curvature-based adaptive sampling method, in which the sampling
boundary for a limit state is a parabolic surface that is rotationally symmetnc about the vector
OP that passes through the origin O and the MPP, P. The sampling region is increased by
increasing or decreasing the curvature of the parabolic surface until there are no more failure
points in the increased sampling region. Assuming a common curvature, the samples in the
sampling region are generated first. Subsequently, extra samples are generated only in the
increased region introduced by the curvature change. The probability increment for each
curvature change can be evaluated and used as a basis for generating the probability-consistent
number of samples. The details on how to generate samples and compute the failure probablhty
are given in Wu (1994).
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Q
v
o
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Figure 4-2. Tllustration of the adaptive importance sampling (AIS) method.

38




The generated AIS samples can further be used to compute the probability sensitivities with
respect to the probability distribution parameters (i.e., mean and standard deviation) of the input
random variables. The computed sensitivities are accurate because the AIS-based sensitivities
are based on the "exact" failure regions. Details on how to compute probabilistic sensitivities are
discussed further in Section 4.9, Wu (1994), and Thacker and Wu (1995).

4.5 FAST PROBABILITY INTEGRATION.

Z(X) is oftentimes difficult to evaluate requiring a computationally intensive methods such as
finite elements. Thus, the key to an efficient probabilistic analysis is one that minimizes the
number of times Z(X) must be evaluated. As an alternative to Monte Carlo simulation,
described in Section 4.4.1, more efficient numerical integration methods such as FPI can be used
(Wu and Wirsching, 1987; Cruse, et al., 1988; Wu and Burnside, 1988). The entire cdf can be
efficiently constructed using the AMV+ (Section 4.6), which employs the FPI algorithm. A
summary of the basic steps involved in FPI are as follows:

1. Obtain an approximation to the exact g-function using, for example, by finite differencing or
perturbation methods.

2. Transform the original, non-normal random variables X into independent, standardized
normal random variables (Ang and Tang, 1984), u.

3. Calculate the minimum distance, B, from the origin of the joint pdf (jpdf) to the limit state
surface, g<0. This point, u*, on the limit state surface is the most probable point (MPP) in
the transformed u space because it is the most probable combination (maximum jpdf) of the
standardized normal random variables on the g <0 surface. Figure 4-3 shows a jpdf for two
random variables, the limit-state, and the MPP.

4. Approximate the g-function g(u) at u* or g(X) at the corresponding X* using a first- or
second-order polynomial function.

5. Calculate p, = P[g<0] using available analytical solutions (Madsen, et al., 1986; Tvedt,
1990).
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Joint Probability Density Function
(JPDF)

G(X)=Z(X)-Z0

Most Probable Point
U (MPP)

Figure 4-3. Joint pdf and MPP for two random variablés in standard normal (u) space.

4.6 ADVANCED MEAN VALUE METHOD.

The Advanced Mean Value iteration method (AMV+) was developed specifically for performing
probabilistic finite element analysis (Wu, et al., 1990). The algorithm couples the finite element
code with an FPI code. Two different AMV+ algorithms have been developed: One algorithm
is used when the value of the cdf is prescribed (i.e., when the probability level p is specified) and
the corresponding response value z is to be computed. This algorithm is termed the p-level
procedure. The other algorithm is used when the 2 value is prescribed and the corresponding
probability is to be computed and is termed the z-level procedure.

The p-level procedure is used to compute the response corresponding to a specified probability,
or p-level. The method is primarily used when points along the entire range of the cdf are to be
computed (i.e., a "cdf analysis"). Table 4-2 gives the number of finite element solutions that are
required to perform a first-order probabilistic analysis using AMV+. In Table 4-2, N is the
number of input random variables and M is the number of p-levels. MVFO refers to "mean
value first order" and AMVFO refers to "advanced" MVFO. In an MVFO analysis, (N+1)
structural sensitivities are computed and used to construct a linear performance function (g-
function) about the mean values of the random variables.
n

Z = zZ@ + ¥ 2|

i+10X,

= ZX) + HX)

W& - 1) + HED “




In step 2, a response update (or "move") is performed, which entails a finite element solution to
update the response value at each of the M probability levels. This effectively approximates
H(X) in Eqn. (4.7) with a simplified function H(Z,). If the change in Z from step 1 to step 2 is
larger than the user-specified tolerance, Eqn. (32) is re-computed about the new MPP and step 2
repeated. This iteration procedure is the AMV+ method.

Table 4-2. Finite element solutions required to compute a CDF using the AMV+, p-levels,
procedure.

Iteration Analysis Number of Finite
0 MVFO N+1
0 AMVFO +M
(Move)

First Order +(N+1)xM
Move +M

First Order +(N+Dx M
Move +M

The AMV+ z-level procedure is used to compute the response corresponding to a specified
probability, or z-level. The method is primarily used for reliability analysis, where p must be
calculated for a specific value of z. A more detailed description of both the p-level and z-level
AMV+ procedures can be found in (Wu, et al., 1990; Thacker, et al., 1991).

4.7 CORRELATED NON-NORMALS.

If the original random variables X are dependent, a transformation must be made to a space in which
the variables are independent before proceeding with the FPI calculations. If the joint pdf is
available, the Rosenblatt (1952) transformation can be used:

U, = ®[F(x)]

u, = ¢-1[1;2(x2|x1)] 4.8)

u, = ®'F(x |x,, X, ., X, )]

where @71 represents the inverse standard normal cdf and F,(*|) denotes the conditional cdf.
Typically, the complete joint pdf (jpdf) is very difficult to obtain based on either theory or
experiment. In addition, the Rosenblatt transformation requires the inversion of the conditional
distribution functions, which can be difficult to evaluate.
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A less rigorous but more practical method of dealing with dependant non-normal variables is to
approximate the jpdf by using the marginal pdf's and associated correlation matrix
(Hohenbichler, et al., 1981). An advantage of this model is that the required information is
relatively easy to obtain from experimental data. The first step in the procedure is to transform
the dependent non-normal variables X to standard normal u, '

u = & FX)] (4.9)

Next, the correlation coefficients in the u-space are computed using:

e =!X- By, Xj - pxl
p‘ﬁ = f f . °x/ b, u,) du, duj (4.10)
- - '
where,
1 - (u,2 -2p, Hu‘uj + uf)

S, u) = (4.11)

€xp
2n\[1-p2,, 2(1-p,)

and p_ is the unknown to be determined. This model, originally proposed by Nataf (1962),

(3] . . . . .
assumes that the u-space variables are jointly normal. As a result, the maximum correlation
assigned in the X-space can be limited based on the input marginal distributions (e.g., two non-
normal distributions in X-space cannot be fully correlated and also be jointly normal). This is
discussed further by Liu and Der Kiureghian (1986), who also present approximate solutions to
Eqn. (4-10) for several different distribution combinations.

For use in a general computational framework in which any two variables may be correlated
regardless of distribution type, a more general solution procedure than the one proposed by Liu
and Der Kiureghian (1986) is needed. The method employed here approximates Eqn. (4-10)
using a high-order polynomial expansion and the normal characteristic function (Wu, et al.,
1989; Harren 1990).

Next, an orthogonal transformation matrix is constructed using Pus and applied to transform the
correlated normal random variables, u, to uncorrelated normal random variables, v,

v=ATu (4.12)

In Thacker and Senseny (1994), this model is used to demonstrate the importance of including
correlations in probabilistic calculations. A limestone test specimen is subject to a spherically-
divergent strain path. The SR cap constitutive model is used to model the material response in
terms of nine material parameters. Probability distributions for each parameter and the
associated correlation matrix were measured from 20 repeat laboratory tests (Fossum, ef al.,
1995). Probabilistic calculations were performed using the proposed model and verified using
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Latin hypercube (correlated) sampling. The results show the approximate method described
here to be very accurate relative to Latin hypercube sampling. The results also show significant
differences in the computed probabilities between assuming no correlation and the measured
correlation, thereby indicating the importance of including correlations in the probabilistic
calculations.

4.8 CONFIDENCE BOUNDS.

The methods for probabilistic analysis described in the previous sections all assume that the
parameters of the random variables (mean, standard deviation, etc.) are all known with "high-
confidence." Statistically, this implies that a large amount of data were available to characterize
the random variables. In most applications, however, sufficient data is not available. Thus,
some uncertainty will exist in the parameters of the random variables themselves.

As a precursor to developing an efficient procedure for constructing confidence bounds, a survey
of methods for uncertainty modeling in geomechanics is given in Torng and Thacker (1992b).
This work proposes a scheme to construct confidence bounds for structural problems containing
uncertainties due to inherent variability, estimation error, modeling error, and human error. The
effect of the inherent variability is reflected in the calculated reliability, i.e., the cdf, whereas the
effect of estimation error, modeling error, and human error are reflected in a confidence bound
on the calculated reliability. Strictly speaking, then, the bounds should not be termed
"confidence bounds," which is normally used to denote the uncertainty due to sampling error
only. For lack of a better name, however, "confidence bounds" will be used here.

The proposed nested iteration procedure in Torng and Thacker (1992a) is improved by Torng
and Thacker (1993) to utilize the probabilistic sensitivity factors (&) computed during the
AMV+ probabilistic analysis. The basic idea is to construct a first-order Taylor series at the
point of interest in the cdf

gY) = B+ E ap <u - B, 233 51 “B) - ®7(1-py) (4.13)

and compute the derivatives as discussed in Section 4.9. To demonstrate the efficiency of the
new method, the procedure is applied to a limestone test specimen subject to divergent strain
path loading. Of the six random variables considered in the problem, the unconfined
compressive strength and joint spacing were assumed to have uncertain mean and standard
deviation. Excellent results are obtained using very few g-function calculations.

To further illustrate the method, the procedure is applied to the analytical tunnel closure model
described in Section 2. In this problem, only the mean of the external pressure is assumed to be
a random variable with its own mean and standard deviation. The COV for the mean is defined
as 2%, and is assumed to follow a normal distribution. None of the other random variables’
parameters are modeled as random variables.

Figure 4-4 shows the cdf and confidence bounds for the 50% and 95% confidence levels
computed using Monte Carlo and the method described here. Any confidence level can be
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chosen; these are selected only to demonstrate the type of result obtained. As shown in
Figure 4-4, the proposed method obtains excellent results at a fraction of the cost of using Monte

Carlo.

1 00%} E e
o/ |
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Figure 4-4. 50% and 95% confidence bounds for the analytical tunnel closure model.

4.9 SENSITIVITY ANALYSIS.

For planning and design purposes, it is important to know which problem parameters are the
most important and the degree to which they control the design. This can be accomplished by
performing a sensitivity analysis. In a deterministic analysis where each problem variable is
single-valued, design sensitivities can be computed that quantify the change in some
performance measure due to a change in the parameter value.

In a probabilistic analysis each variable is usually characterized by a mean value, a standard
deviation, and a distribution type, i.e., three parameters instead of one. The performance
measure is usually the failure probability or the safety index B, which is closely related to the
failure probability. Sensitivity measures can be defined with respect to each of these
probabilistic parameters or a change in any of the deterministic parameters. In the following
sections, the calculation of deterministic and probabilistic sensitivities are summarized using
both sampling and numerical probability integration methods.
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4.9.1 Design Sensitivities.

Design sensitivities measure the change in response due to a change in an input parameter.
Denoting the response as Z and the input variables as X, the response function can be written as

Z=2(X,X,....X,) = ZX) (4.18)

where n is the total number of input parameters. From this the i -th design sensitivity is given
by

9Z

Ez' (4.15)

4.9.2 Probabilistic Sensitivities.

Design sensitivities only reflect the deterministic importance of the problem variables. In a
probabilistic analysis, meaningful sensitivity measures are how p,changes with respect to
changes in input parameters. The input parameters in a probabilistic analysis generally include
the mean, standard deviation and distribution type for each problem variable.

The limit-state function
g=2X)-z=0 (4.16)

is written such that for a specific response z, {g:g < 0} denotes the failure set. Probabilistic
analysis methods such as FPI, FORM, SORM, etc., use an optimization algorithm to locate the
minimum distance from the limit-state to the origin, denoted p. Calculations are typically
performed in standard normal space, or #-space. For normally distributed variables, the
transformation from X to u is given by u, = (X,- p)/0,. For non-normal variables, the
transformation is usually nonlinear and must be performed numerically, as described later.
Once the minimum distance point 4, is located, a first-order approximation to p, can be
computed from

p, = ®(-B). (4.17)

where ® is the standard normal cdf. Thus, sensitivity measures in terms of B can also be
calculated in terms of p, by applying Eqn. 4.17. In the u-space, B is given by

B=yIu) (4.18)

SO

(4.19)




where the «; are the probabilistic sensitivity factors. FPI methods compute «; as a by-product
of the optimization algorithm from the g-function gradient calculation,

9
_L vewy _ _\%
i N (4.20)
t| ou,
which show that the «; are proportional to 8g/3u, . For normally distributed variables,
transforming to X-space gives,
9 og %X/ _ 3
g - °¢ =28, o, (4.21)

ou,  0X; ou,  oX;

which shows that «; are proportional to the design sensitivity ¢g/3X; and standard deviation of
the i -th variable. For non-normal variables, dg/du, will generally also be a function of the
mean. From Eqn. 4.21 and 4.19, it is seen that «; reflects the i -th variable's contribution to p,.

The magnitude of «; can be used to rank the random variables in order of importance. The sign
of a; can be used to determine how to change pfby adjusting «;. Since «; is a function of
several basic parameters, it is more useful to know how ps (or B) changes with respect to a
change in the mean or standard deviation. For normally-distributed variables, these are easily
derived as

o _ op W _ &
o, ou; Om 9,
(4.22)
ap _ op O _ o« .
do, ou; do, o, ‘

For non-normal variables, du,/dp, and du,/3d o, are computed numerically as follows. First the
mapping function from X-space to u-space is defined

u = ®F(x,0)] = T(,0) (423)

where F, is the cdf of x, and 6 are the parameters of F_. Next, du,/d0, is approximated as

u;  T(x,0)-T(x),0)
99, 6,-6,

(4.24)
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where the """ signifies a perturbation.

So the procedure is to perturb 6, to é‘, compute T(x,, 8) and substitute into (4.24). Although
approximate, only the mapping is changed, so no further g-function calculations are required.

4.9.3 Sampling Based Probabilistic Sensitivities.

The samples used in the AIS (or Monte Carlo) analysis can be used to compute sensitivity
measures. Since no further g-function calls are required, the sampling-based sensitivities can be
computed quite economically. The basic idea is presented in (Wu, 1994) and summarized here.
The analysis is extended to include lognormal variables and applied to a tunnel closure problem
in Thacker and Wu (1995).

By definition
=[ - [f& (4.25)

where Q is the failure region and f, is the pdf of x. The nondimensional sensitivity of p with
respect to a parameter 0 in f,_is then

aplp _ o ¥,
so = o/ [f ae} - E[ZEEL (4.26)

where E[‘] is the expectation operator. The sensitivity coefficients S with respect to the mean
and standard deviation are thus

S=M=E%’o‘

" op,/ o, Op, L,
4.27)
(]
L do,/ o, do, fx,
In (Wu, 1994), S,“ and So, are derived for the case where x; is normally distributed,
§*™ = Elu’-1
. [ ]“ (4.28)

s = E[u,]o
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The sensitivities can also be computed analytically when x; are lognormal. The lognormal pdf is

given by
2112
_ 1 Exp[_l(ln(x) }.)] “29)

V2n Ex 2\ &

"

where £ = y/In(1 + 0*/p*) and A - Ing + E%/2. Computing df,/ 3, and 8f,/ 9o, and substituting

into (4.27) gives
o, e G +Em ul-1
S:WM = —‘———E_{(e-zz‘l)[( lE -u, +u‘

(4.30)
(8] 1 - e'Ez ( ulz - l
Slognomﬂl = _ul

[
o E /(eﬁz_ l)eEz+2A.k E

where u, - (In(x) - A)/§. For other £, of, / op, and df,/ do, are computed numerically.
4.9.4 Sensitivity to Distribution Type.

Another important sensitivity is how p, changes with respect to the distribution type, e.g.,
normal, lognormal, or Weibull. The question is important because oftentimes the available
experimental data is adequate to characterize the mean and standard deviation, but inadequate to
select the proper distribution type with a commensurate level of confidence. The choice of
distribution type becomes increasingly important for low p,.

The sensitivity measure used is the ratio of perturbed B to the original B

ﬁ
[ 4.31
Y B (4.31)

f can be computed by re-running the probabilistic analysis with the distribution type changed
for one of the random variables, or estimated using an approximate procedure. The approximate
procedure involves the following steps: (i) change the distribution type for the i-th random
variable, (ii) compute a perturbed #,;’ using the new distribution type and (4.23), (iii) compute a
perturbed Q using 8, and (4.18), and (iv) compute y using (4.31). There are some situations
where the approximate procedure breaks down. For example, switching from normal to
lognormal with a negative variate will cause the procedure to fail. However, since no g-function
evaluations are required, the approximate procedure can be an effective and simple method for
estimating the distribution sensitivity.
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SECTION 5

NUMERICAL EXAMPLES

5.1 ANALYTICAL TUNNEL CLOSURE MODEL.

A probabilistic analysis and sensitivity study is performed using the analytical tunnel closure
model. This model describes the closure of a circular opening in a Mohr-Coulomb medium
subject to uniform internal and external pressure acting on the opening as described in Section
2.2. The problem variables are listed in Table 5-1. More detail on the probabilistic analysis can

be found in Thacker and Senseny (1992).

Table 5-1. Random variables used in the probabilistic analysis.
Variable Mean Ccov Distribution Type
Young's Modulus, E 30,000 MPa 10% Extreme Value
Poisson's Ratio, v 0.20 10% Weibull
Unconfined Comp. Strength, o, 25 MPa 20% Extreme Value

Friction Angle, ¢ 30° 10% Normal
Dilation Coefficient, X 0.75 5% Truncated Normal
0<x<10

External Pressure, P, 90 MPa 10% Lognormal

Internal Pressure, P 20 MPa 5% Lognormal

Using the AMV+ procedure, the cdf (Figure 5-1) and «, (Figure 5-2) were calculated. As an
example, for vulnerability assessments, a probability of kill p, greater than 0.85 is desired. This
probability corresponds to a cdf value of 15%. In this region of the cdf, two variables are

dominate: Young's modulus and external pressure.
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Figure 5-1. Cumulative distribution function for the analytical tunnel closure model.
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Figure 5-2. Probabilistic sensitivity factors (a) at cdf=15% or p;=0.85%. As shown, Young's Modulus
and external pressure are dominate.
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Nondimensionalized design sensitivities computed as part of the AMV+ probabilistic analysis
are shown in Figure 5-3. E and P, are clearly dominate; however, the friction angle and internal
pressure are also significant.
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Figure 5-3. Design sensitivities at approximately p,=0.85.

In Figure 5-4, the probabilistic sensitivity with respect to the mean (8p/du ) is shown. Since B is
directly related to probability, Figure 5-4 indicates that a change in the mean value of the
dilation factor y would have the most impact on the probability.
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Figure 5-4. Probabilistic sensitivity with respect to mean.




The probabilistic sensitivity with respect to the standard deviation (9B/dc) is shown in

Figure 5-5. Here it is seen that a change in the standard deviation of Poisson's ratio would have
the most impact on the probability.
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Figure 5-5. Probabilistic sensitivity with respect to standard deviation.

The potential error in assuming the wrong distribution type for the random variables is shown in
Figure 5-6. The sensitivity measure used is y - §/B where f is the perturbed beta
corresponding to a change in distribution type. Four distributions for each variable are tested.
The case where y - 1 indicates that no change in p was seen when the distribution type was
changed. As shown, changing the distribution of E from it's initial value (Extreme Value) to any
of the other three distributions results in the largest change in . Poisson's ratio, friction angle,
external pressure and internal pressure are also sensitive to changing to the extreme value
distribution in particular. In an actual design situation, however, certain distributions would be
ruled out based on physical arguments and/or statistical goodness-of-fit.
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Figure 5-6. Sensitivity to change in probability distribution type.

Several points can be made regarding the probabilistic sensitivity results. First, more
information is made available for decision making and planning than is available from a
deterministic analysis. Only certain parameters of certain variables are actually controllable so it
is important to know which controllable parameters will have the greatest impact on the design
or plan. Second, the probabilistic sensitivities can reflect a much different picture than design
(deterministic) sensitivities. Because of this, decisions based only on deterministic analysis
results should be used with caution. Finally, from a computational standpoint, all of the
sensitivity results derived earlier and illustrated here are very economical to calculate; most are
obtained during the course of the probabilistic analysis. For those that must be computed after
the probabilistic analysis, efficient methods as described earlier have been developed and
implemented.

5.2 PROBABILISTIC DEEP TUNNEL ANALYSIS.

The probabilistic response of a deep buried tunnel subjected to a short-duration stress pulse is
demonstrated. The problem is highly dynamic, involves nonlinear material behavior, and includes
large uncertainties in the material properties, geometry, and loadings. An enhanced version of
PRONTO?2D is used to calculate the deterministic tunnel response. The failure mode considered
is excessive closure. The AMV+ method is used to establish the cdf of tunnel closure with relatively
few finite element re-solutions. Monte Carlo and AIS methods are used to verify the probabilistic
solution. The results show the AMV+ method to be highly accurate and efficient.




The problem geometry and loading are shown in Figure 5-7. The analysis considers a steel-lined
tunnel in a jointed rock mass subjected to a cylindrically-divergent stress wave. Plane strain
conditions are assumed. The response of interest is maximum tunnel closure at any point in
time.

Pressure
450m —
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500m — )
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\ Time (ms) '
560m — Transmitting
Boundary

Figure 5-7. Problem description, finite element mesh, and loading.

The elastic jointed rock mass is modeled using the compliant joint model and the inelastic
response is modeled using the Drucker-Prager model, described in Section 2.3.3.1. The joint
spacing is 1 m and the orientation of the joint sets are horizontal and vertical with each set being
perpendicular to the plane of the problem. The steel tunnel liner is 0.05 m thick and is modeled
using an elastic-perfectly plastic material model. A frictionless contact surface is assumed at the
rock-liner interface. The problem variables and corresponding values are listed in Table 5-2. A
preliminary study of this problem using fewer random variables is given in (Riha, et al., 1992).
The rock properties are typical values for medium-strength rock.

The deterministic response is shown in Figure 5-8, where deformed shape plots of the tunnel
liner and adjacent elements for several times through the analysis are shown. All tunnel closures
are calculated at the outer surface of the liner. As the stress wave arrives at the tunnel, the tunnel
takes on an oval shape with closure at the crown-invert and opening at the springline. Then, as
the wave passes by the tunnel, the crown-invert closure decreases, causing the springline to
begin to close. This is evidenced in Figure 5-8 by the liner pulling away from the rock on the
sides as it is allowed to open at the crown-invert.
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Table 5-2.

Problem variables and inputs.

Variable

Mean

Units

CoVv

Distribution

Young's Modulus

13,200

MPa

5.64

Extreme Value

Poisson's Ratio

0.23

10

Weibull

Peak Load

100

10

Lognormal

Density (2)

2420

Normal

Unconfined Comp. Strength (2)

51

Extreme Value

Friction Angle (1)

35

Lognormal

Dilatation Angle (1)

35

Lognormal

Tensile Strength

2

Density (liner)

Young's Modulus (liner)

200

Poisson's Ratio (liner)

0.3

(1) Fully co;

—_—)

oms 40 ms
Isolated Section Around Tunnel

150 ms

Crown-Invert Closure (%)

rrelated. (2) Dropped for AMV+ analysis.

40

80 120 160

Time (ms)

Figure 5-8. Deformed shape plots magnified 10X for several times during the analysis and the time
history of crown-invert closure.
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To save computation time in the probabilistic analysis, the deterministic analysis is stopped at
150 ms, when the loading portion of the stress wave had passed the tunnel. In addition to an
analysis with the random variables at their mean values, two perturbations (30.50) of each
random variable are analyzed for a total of 15 deterministic analyses. The additional
perturbations beyond that needed to construct a linear response function are performed to verify
that the sensitivities were accurate and not being adversely effected by the unavoidable noise
associated with transient direct integration solutions. The MV cdf based on these 15 FE
solutions is shown in Figure 5-9.

To further save computation time, a sensitivity analysis was performed based on the MV
solution. From this analysis, density and unconfined compressive strength were found to
contribute only a small amount to the variation in crown-invert closure. Thus, these two
variables were dropped (i.e., held at their deterministic mean value) during the AMV+ analysis.

To calculate converged probabilistic results (MPP locus), the AMV+ procedure is used. Since
the primary goal of the analysis is to verify the probabilistic analysis approach, the convergence
tolerance for the AMV+ iterations is set to 1%, which is smaller than what is typically required.
The total number of FE solutions to compute the converged cdf using AMV+ (including the MV
solutions) is 133. After confidence is gained, the convergence tolerance is usually relaxed and
only single perturbations are used thereby greatly reducing the number of FE calculations
required.

The cdf of tunnel closure is shown in Figure 5-9. The MV cdf is accurate at the 50% probability
level where the approximate linear response function was initially constructed. However, in the
tail regions the difference between the MV and AMV+ cdf's are more significant. Even though
convergence was obtained using the AMV+ procedure, the probability calculation is still
approximate because an approximate response function is used. To check quality of the
probability calculation, Monte Carlo simulation is used. As shown in Figure 5-9, the results
verify the AMV+ solution from about -20 to +2a. To verify the solution further out in the tails,
the AIS method is used, which requires on the order of 100 FE solutions per point shown in
Figure 5-9. To verify these regions of the cdf with Monte Carlo would have required thousands
of FE calculations. It should be noted that the AIS analysis was performed only to verify the
AMV+ solution; in practice a larger error tolerance for AIS would be used resulting in
significantly fewer FE solutions.
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Figure 5-9. Cumulative distribution function for crown-invert tunnel closure.

Figure 5-10. At low closure levels, Young's modulus contributes the most to the closure
variation, whereas at higher closure levels the load becomes more important.
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Figure 5-10. Probabilistic sensitivity factors for the deep tunnel problém.




This analysis demonstrates that advanced probabilistic algorithms employing fast probability
integration methods can be used to predict the uncertain structural response of underground
structures requiring nonlinear dynamic calculations.

5.3 TUNNEL VULNERABILITY ANALYSIS.

The problem studied is a shallow tunnel built into a sloped, multi-layered, geology. The
conceptual model is shown in Figure 5-11. The tunnel is of size 2R and has a retaining wall of
height h at the adit. The geology considered has six layers of varying thickness (constant within
each thickness) and S-number intersecting the tunnel at slope 6. A weapon of mass M hits the
hillside at velocity V_ at a distance X measured up from the retaining wall and a distance Y off
the axis of the tunnef)and penetrates until the velocity of the weapon reaches zero.

Figure 5-11. Conceptual tunnel vulnerability model.

The following assumptions and/or observations are made: 1) the layers are parallel to the surface
of the hillside and do not change in thickness, 2) the weapon impacts the hillside at a right angle
and does not change direction while penetrating, 3) the standoff to the tunnel is the absolute
distance from the tunnel wall to the center of gravity of the weapon after the weapon reaches
zero (effective) velocity, 4) the weapon can travel through the tunnel and into the layers
underneath the tunnel, 5) and the weapon may not intersect the tunnel if Y>R.

A table of the model inputs is given Table 5-3. The mean and standard deviation for s;, t;, and ©
were provided by Chitty (1995). Data for the remaining problem variables, including
probability distribution types, were assumed. The modeling error B listed in Table 5-3 is a
multiplier on the damage function in the probabilistic calculation.
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|
| Table 5-3. Model variables used in the tunnel targeting problem.
Probability
Random Variable Identifier | Mean Value cov Distribution
Layer 1 Thickness t 0.5m 25% Lognormal
Layer 1 S-number S, 10 20% Lognormal
Layer 2 Thickness t, 1.0m 25% Lognormal
Layer 2 S-number Sy 6 20% Lognormal
Layer 3 Thickness ty 20m 25% Lognormal
Layer 3 S-number Sq 2 20% Lognormal
Layer 4 Thickness ty 50m 25% Lognormal
Layer 4 S-number Sy 1.5 20% Lognormal
Layer 5 Thickness ts 7.0 m 25% Lognormal
 Layer 5 S-number S¢ 1 20% Lognormal
Layer 6 S-number Sg 0.8 20% Lognormal
Slope Angle 0 33.81 degrees 21% Lognormal
Weapon Initial Velocity v 335 m/s 10% Lognormal
’ Transverse Aimpoint Error Y 0.0m (s=1m) Normal
| Modeling Error B 1 10% Normal
| Aimpoint X Variable 0% -
[ Retaining Wall Height h 3m 0% -
| Tunnel Radius R 2m 0% -
! Weapon Mass M 8.9 kN 0% -
Damage Function Curve-fit Coeffs. C. Variable 0% -

A summary of the deterministic calculational procedure is given in Figure 5-12. For a given
aimpoint, the first step is to compute the location of the layer interfaces. The tunnel is
considered as an air layer, which offers no resistance to the weapon should it be encountered
during penetration. As shown in right side of Figure 5-12, the presence of the tunnel could
eliminate a layer, or the tunnel may not lie on the penetration path for some values of Y. Next,
the penetration depth z,, (measured normal from the surface of the hillside with inward being
positive) is computed using the PENCURYV penetration program (Adley, et al., 1994). After the
penetration depth is computed, the standoff from the weapon center of gravity (cg) to the tunnel
wall is computed. Finally, the damage (rubblized volume) is computed using the damage
function, which is assumed to be a curve-fit to several known data points.




1. Calculate interface locations (zi) along

line of penetration

-zi=1(X,t,6,h,R,Y)

- Layers extend below tunnel

- Layers may be completely masked by gg; ; . gg;

tunnel ’ e

- Tunnel may not lie on penetration path 13,53 " 13,83
2. Calculate penetration depth wse s

- Zp = PENCURV(zi, Si, Vp, Mp) - 15,85
3. Calculate Standoff 19,59 R

-Sv = Abs[R + h + X sin(8) - Zp cos(6)] - R — poeee 17150

- S = Sqrt[(Sv+R)*2 + YA2)] - R 16,86 . 1856
4. Calculate Damage (Weapon also tilted out-of-piane)

 =Vr=C0 +C1(S) + C2(S)*2 + ... + Cm(S)"m

Figure 5-12. Deterministic calculation procedure.

Two damage functions (Figure 5-13) are considered, herein referred to as either the "long-tail"
or "short-tail" damage functions, or f; and £, respectively. The short-tail function represents an
exact fit through the three data points whereas the long-tail function represents a regression fit
through the three data points and another point at {11,0}. Both functions pass through {0,0} and
are given by: -

fav = 6125 s - 9.7 s + 0.38 s 0 < s <11.454
! " 0 otherwise
5.1
3476 s + 1.67 s2 - 0.71 53 0 <s < 824
feV,= .
0 otherwise
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Figure 5-14. Sequence of penetration calculations at different aimpoints, X.

As an illustration of the deterministic calculations, Figure 5-14 shows the weapon penetration at
six different aimpoints. As X increases, the distance from the surface of the hillside to the tunnel
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increases. Thus, in the plots in Figure 5-14, the tunnel gets further away from the hillside

surface for increasing X. Of interest is that for X<3m, the weapon passes through the tunnel and

stops shortly after reaching the other side. Since the cg of the weapon is still inside the tunnel,

no damage is done as modeled by the functions given in (5.1).
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Figure 5-15. Deterministic calculational results: a) variation of penetration depth (left scale) and
standoff (right scale) with aimpoint; b) variation in damage with aimpoint.

A series of aimpoints were run and the results plotted in Figure 5-15. Figure 5-15a shows the
variation in penetration depth and standoff with aimpoint. The penetration depth increases
initially due primarily to the slope of the hillside. At X=~2m, the penetration depth drops

abruptly due to the fact that the weapon no longer penetrates through the tunnel. For X>2m, the

penetration depth is constant and the standoff increases linearly as expected. In Figure 5-15b,

the variation in damage is plotted. For both either the long and short tail damage functions, the

optimum aimpoint is around 8 to 10m.
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A probabilistic analysis is performed using the deterministic tunnel vulnerability model, the
inputs listed in Table 5-3, and the short-tail damage function. The cdf of damage represents the
probability that the damage will be less than a given damage value; thus the vulnerability
function is defined as I-cdf such that vulnerability denotes the same meaning as probability of
kill (p;). For example, using Figure 5-16 it is seen that p, is approximately 90% if the attack
point is 8m and the kill criteria is a damage level of 100 m’>. In other words, the probability that
the damage will be greater than or equal to 100 m? is 90%, which also equals Py Py can always
be increased by decreasing the failure criteria; however, as shown in Figure 5-16, p; cannot go
above 90% if kill is assumed to occur at a damage level of 100 m°>. From Figure 5-16 it is also
seen that p; goes down very quickly as the aimpoint varies from 8 m.

1 - P——

2z .,

0.9 :~- /X=3m \\\\‘\'-.. ./X=8m ]

0.8 F--. *~-\\‘ x=6m/ \‘ ‘
0.7 } RN \ i
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0.1

0 .
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Figure 5-16. Vulnerability function (=1-cdf).

The sensitivity to aimpoint is also seen in Figure 5-17, where p; is plotted for many aimpoints.
The maximum p, is found (as in the deterministic calculation) to be around 8 m, but the
probabilistic results also shows that p; drops off severely as the aimpoint varies from 8 m. The
initial peak seen in Figure 5-17 corresponds to a local maximum corresponding to the weapon
detonating below the tunnel. This peak was not found in the deterministic calculation. To see
the effect of choosing different kill criteria, two kill levels in addition to the 100 m? level are
plotted. As shown, the range in py is about 20% for X=8 m + Sm.
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Figure 5-17. Variation in probability of kill with aimpoint.

Nondimensionalized Mean Sensitivity
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Figure 5-18. Nondimensionalized sensitivity of py with respect to the mean of
each parameter.
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Figure 5-19. Nondimensionalized sensitivity of Py, with respect to the
standard deviation of each parameter.

In Figures 5-18 and 5-19, the nondimensionalized sensitivity coefficients §, and S, are plotted
(see Section 4.9.3 for the definition). S measures the sensitivity of p; with respect to the mean
value of each random variable, and S, measures the sensitivity of p, with respect to the standard
deviation of each random variable. Thus, it is seen that changing the mean value of the S-
number for layer 3 (S;) and thickness of layer 4 (t,), or the standard deviation of the slope angle
will have the largest impact on p,.

5.4 PROBABILISTIC SWAT-II ANALYSIS.

The refined model of the SWAT II dynamic test was analyzed probabilistically. The mesh is
shown in Figure 5-20. The deterministic model inputs and loading are the same as those given
in Section 3.3.2. The refined model used here was created after the verification and validation
exercise reported in Section 3.3.2 was completed. The purpose of this analysis is to explore
which problem variables are the most important with respect to tunnel failure. The random
variables are defined in Table 5-4 along with the correlation matrix in Table 5-5. These
probabilistic inputs were obtained by Fossum, et al., (1995) and used by Thacker and Senseny
(1994) to explore the significance of correlations on the computed cdf results. The load scale
factor term listed in Table 5-4 acts as a multiplier on the velocity time history used as input to
the SWAT-II calculation; therefore, it is given a mean of 1.0. The standard deviation and
distribution were selected arbitrarily to be 0.1 and normal respectively. There is no correlation
between the load scale factor and the other random variables.




—

L {

Figure 5-20. Refined mesh used for the probabilistic SWAT-II analysis.

Table 5-4. Parameter summary.

Parameter Mean Value Std. Deviation Prob. Distribution
K (MPa) 15725 761 Lognormal
G (MPa) 9112 290 Lognormal
A (MPa) 689.5 2.5 Normal

B (MPa'l) 3.90E-04 4.70E-06 Lognormal
C (MPa) 673.2 2.6 Normal
DMPa’h) 1.4EE-03 8.49E-05 Weibull

\ 0.08266 0.00424 Weibull
R 4215 0.215 Weibull
X, -468.1 4.5 Normal
Load scale factor 1.0 0.1 Normal
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Table 5-5. Correlation matrix.

K G A B C D W R Xy
) 1.00
-0.0302 1.00

0.1582 | -0.0606 1.00

-0.1677 | 0.0594 | -0.0966 1.00

\

0.1351 | -0.0519 | 0.9901 | 0.0411 1.00

-0.0101 | 0.0141 | -0.6683 | -0.6094 | -0.7470 1.00

-0.0082 | -0.0397 | 0.5596 | 0.4821 | 0.6168 | -0.8446 1.00

-0.0319 | 0.0395 | -0.7899 | -0.4051 | -0.8485 | 0.8356 | -0.8755 1.00

0.0629 | 0.0172 | 0.4839 | 0.2867 | 0.5347 | -0.4802 | -0.0302 | -0.2752 | 1.00

ujstcow>om

The cdf is shown in Figure 5-21 along with the 50% and 80% confidence intervals. The AMV+
analysis procedure is used to compute the cdf and required 33 model solutions. The confidence
bounds are computed based on the coefficient of variation (COV) of the mean and the standard
deviation using 20 test samples following the procedures described in Section 4.8. The COV of
the mean and standard deviation for each variable is shown in Table 5-6.

Table 5-6. COV for the random variable mean and standard deviation.
Parameter Mean COV Standard Deviation COV

K (MPa) 0.019 0.16
G (MPa) 0.017 0.16
A (MPa) 0.019 0.16
B (MPa™) 0.428 0.16
C (MPa) 0.016 0.16
D (MPa™) 0.131 0.16
A 0.131 0.16

R 0.017 0.16

X, 0.012 0.16
Load scale factor 0.100 0.10
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‘Figure 5-21. CDF of crown-invert closure showing 50% and 80% confidence bounds.

The sensitivity measures are the change in Beta with respect to the mean and standard deviation.
These sensitivities are shown in Figures 5-22 and 5-23. The results indicate that the mean value
of A and C contribute significantly to the variations in tunnel closure. With respect to the
standard deviation, the load is completely dominate.
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Figure 5-22. Nondimensionalized sensitivity of p with respect to the mean.
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